1.  Multi-Principal Element Materials: Structure, Property, and Processing
    H. L. Zhuang, Z. Yu, L. Li, Y.-J. Wang and L. K. Béland
    Journal of Applied Physics, 135, 010401 (2024). [doi: 10.1063/5.0191748]
  2. A phenomenological model for interstitial hydrogen absorption in niobium
    A. Ramachandran, H. L. Zhuang, and K. Lackner
    Submitted (2024).
  3.  Applications and Manufacturing of multi-functional holey two-dimensional nanomaterials – a review
    D. Wang, Y. Dou, X. Zhang, K. Bi, I. Panneerselvam, H. Sun, X. Jiang, R. Dai, K. Song, H. L. Zhuang, Y. Lu, Y. Wang, Y. Liao, L. Ding, and Q. Nian
    Nano Today, 55, 102162 (2024). [doi: 10.1016/j.nantod.2024.102162]
  4. Quantum machine-learning phase prediction of high-entropy alloys
    P. Brown and H. L. Zhuang
    Materials Today, 63, 18 (2023). [doi:10.1016/j.mattod.2023.02.014]
    Highlighted as the coverage page article.
  5.  A Non-aqueous eutectic electrolyte for rechargeable iron batteries
    R. Vadthya, N. Poornabodha, H. L. Zhuang, and S. Wei
    Submitted (2023).
  6. Vibrational properties of one-dimensional disordered hyperuniform atomic chains
    H. L. Zhuang, D. Chen, L. Liu, G. Zhang, and Y. Jiao
    Submitted (2023). arXiv: 2311.06389
  7. Spin scattering and Hall effects in monolayer Fe3GeTe2
    L. Yu, J.-X. Yu, J. Zang, R. K. Lake, H. L. Zhuang, and G. Yin
    Physical Review B, 108, 134425 (2023). [doi:10.1103/PhysRevB.108.134425]
  8. Interpretable ensemble learning for materials property prediction with classical interatomic potentials: Carbon as an example
    X. Y. Jiang, H. Sun, K. Choudhary, H. L. Zhuang, and Q. Nian
    Submitted (2023). arXiv: 2308.10818
  9. Chemical shortrange order in complex concentrated alloys
    W. Chen, L. Li, Q. Zhu, and H. L. Zhuang
    Materials Research Bulletin, 48, 762 (2023). [doi: 10.1557/s43577-023-00575-8]
  10. Disordered hyperuniform solid state materials
    D. Chen, H. L. Zhuang, M. Chen, P. Huang, V. Vlcek, and Y. Jiao
    Applied Physics Review, 10, 021310 (2023). [doi:10.1063/5.0137187]
  11. Multihyperuniform long-range order in medium-entropy alloys
    D. Chen, X. Jiang, D. Wang, J. Ilyssa Vidallon, H. L. Zhuang, and Y. Jiao
    Acta Materialia, 246, 118678 (2023). [doi:10.1016/j.actamat.2023.118678]
  12. Sudoku-inspired high-Shannon-entropy alloys
    H. L. Zhuang
    Acta Materialia, 225, 117556 (2022). [doi:10.1016/j.actamat.2021.117556]
  13. Disordered hyperuniform quasi-1D materials
    D. Chen, Y. Liu, Y. Zheng, H. L. Zhuang, M. Chen, and Y. Jiao
    Physical Review B, 106, 235427 (2022). [doi:10.1103/PhysRevB.106.235427]
  14. Understanding the mechanism of shockwave induced graphite-to-diamond phase transition
    H. Sun, X. Jiang, L. Liu, Z. Wang, X. Zhang, H. L. Zhuang, Y. Liao, and Q. Nian
    Materialia, 24, 101487 (2022). [doi:10.1016/j.mtla.2022.101487]
  15. Scalable nanomanufacturing of holey graphene via chemical etching: an investigation on process mechanisms
    K. Bi, D. Wang, R. Dai, L. Liu, Y. Wang, Y. Lu, Y. Liao, H. L. Zhuang, and Q. Nian
    Nanoscale, 14, 4762 (2022). [doi:10.1039/D1NR08437B]
  16. From evidence to new high-entropy alloys
    H. L. Zhuang
    Nature Computational Science, 1, 458 (2021). [doi:10.1038/s43588-021-00100-4]
  17. Spin qubit based on the nitrogen-vacancy center analog in a diamond-like compound C3BN
    D. Wang, L. Liu, and H. L. Zhuang
    Journal of Applied Physics, 130, 225702 (2021). [doi:10.1063/5.0074320]
  18. Stone-Wales defects preserve hyperuniformity in amorphous two-dimensional networks
    D. Chen, Y. Zheng, L. Liu, G. Zhang, M. Chen, Y. Jiao, and H. L. Zhuang
    Proceedings of the National Academy of Sciences, 118, e2016862118 (2021). [doi:10.1073/pnas.2016862118]
  19. Dual-salt-additive electrolyte enables high-voltage lithium metal full batteries capable of fast-charging ability
    X. Wang, S. Li, W. Zhang, D. Wang, Z. Shen, J. Zheng, H. L. Zhuang, Y. He, and Y. Y. Lu
    Nano Energy, 89, 106353 (2021). [doi:10.1016/j.nanoen.2021.106353]
  20. Nanosecond laser shock detonation of nanodiamonds: from laser-matter interaction to graphite-to-diamond phase transition
    X. Zhang, H. Sun, B. Mao, R. Dai, H. L. Zhuang, Y. Liao, and Q. Nian
    International Journal of Extreme Manufacturing, 4, 015401 (2021). [doi: 10.1088/2631-7990/ac37f1]
  21. Ultrahigh-rate and long-life zinc-metal anodes enabled by self-accelerated cation migration
    P. Zou, R. Zhang, L. Yao, J. Qin, K. Kisslinger, H. L. Zhuang, and H. L. Xin
    Advanced Energy Materials, 11, 2100982 (2021). [doi:10.1002/aenm.202100982]
  22. Nearly hyperuniform density fluctuations in defected two-dimensional transition metal dichalcogenides
    D. Chen, Y. Zheng, C.-H. Lee, S. Kang, W. Zhu, H. L. Zhuang, P. Y. Huang, and Y. Jiao
    Physical Review B, 103, 224102 (2021). [doi:10.1103/PhysRevB.103.224102]
  23. Topological transformation in pentagonal 2D materials induced by Stone-Wales defects
    Y. Zheng, D. Chen, L. Liu, M. Chen, H. L. Zhuang, and Y. Jiao
    Physical Review B, 103, 245413 (2021). [doi:10.1103/PhysRevB.103.245413]
  24. A tribute to Emily A. Carter
    H. L. Zhuang, J. Keith, and T. Martinez
    Journal of Physical Chemistry A, 125, 1669 (2021). [doi: 10.1221/acs.jpca.0c10468]
  25. Lithium-aluminum-phosphate coating enables 4.6 V cycling performance of LiCoO2 at room temperature and beyond
    X. Wang, S. Li, Z. Tong, D. Wang, X. Wang, H. L. Zhuang, and Y. Y. Lu
    Energy Storage Materials, 37, 67 (2021). [doi: 10.1016/j.ensm.2021.01.031]
  26. An integrated methodology for screening hydrogen evolution reaction catalysts: Pt/Mo2C as an example
    A. J. Tkalych, H. L. Zhuang, and E. A. Carter
    Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile (In Honor of William A. Goddard’s Contributions to Science and Engineering), Vol. 284, Richard Muller & Sadasivan Shankar, Eds. (Springer Series in Materials Science), ISBN 978-3-030-18777-4 (2021). [doi: 10.1007/978-3-030-18778-1_31]
  27. A percolation theory for designing corrosion resistant alloys
    Y. Xie, D. Artymowicz, P. Lopez, D. Wang, A. Aiello, J. Hart, M. Taheri, H. L. Zhuang, R. Newman, and K. Sieradzki
    Nature Materials, 20, 789 (2021). [doi:10.1038/s41563-021-00920-9]
  28. Electrical and thermal transport properties of medium-entropy SiyGeySnx alloys
    D. Wang, L. Liu, M. Chen, and H. L. Zhuang
    Acta Materialia, 199, 443 (2020). [doi:10.1016/j.actamat.2020.08.053]
  29. Disordered hyperuniformity in two-dimensional amorphous silica
    Y. Zheng, L. Liu, H. Nan, Z.-X. Shen, G. Zhang, D. Chen, L. He, W. Xu, M. Chen, Y. Jiao, and H. L. Zhuang
    Science Advances, 6, eaba0826 (2020). [doi:10.1126/sciadv.aba0826]
  30. Room temperature synthesis of 2D Janus layers and their Heterostructures
    D. B. Trivedi, G. Turgut, Y. Qin, M. Y. Sayyad, D. Hajra, M. Howell, L. Liu, S. Yang, M. Petric, M. Meyer, M. Kremser, M. Barbone, G. Soavi, A. Stier, J. Finley, H. L. Zhuang, K. Müller, and S. Tongay
    Advanced Materials, 32, 2006320 (2020). [doi:10.1002/adma.202006320]
  31. The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design
    K. Choudhary,* K.F. Garrity, A.C.E. Reid, B. DeCost, A.J. Biacchi, A.R.H. Walker, Z. Trautt, J. Hattrick-Simpers, A.G. Kusne, A. Centrone, A. Davydov, J. Jiang, R. Pachter, G. Cheon, E. Reed, A. Agrawal, X. Qian, V. Sharma, H. L. Zhuang, S.V. Kalinin, B.G. Sumpter, G. Pilania, P. Acar, S. Mandal, K. Haule, D. Vanderbilt, K. Rabe, and F. Tavazza
    npj Computational Materials, 6, 173 (2020). [doi:10.1038/s41524-020-00440-1]
  32. High-throughput computational characterization of two-dimensional compositionally complex transition-metal chalcogenide alloys
    D. Wang, L. Liu, N. Basu, and H. L. Zhuang
    Advanced Theory and Simulations, 3, 2000195 (2020). [doi:10.1002/adts.202000195]
  33. Anomalous behavior of 2D Janus excitonic layers under extreme pressures
    H. Li, Y. Qin, B. Ko, D. B. Trivedi, Y. M. Sayad, L. Liu, D. Shim, H. L. Zhuang, and S. Tongay
    Advanced Materials, 32, 2002401 (2020). [doi:10.1002/adma.202002401]
  34. Probing the interactions between interstitial hydrogen atoms in niobium through density functional theory calculations
    A. Ramachandran, H. L. Zhuang, and K. Lackner
    Materials Today Communications, 25, 101415 (2020). [doi:10.1016/j.mtcomm.2020.101415]
  35. Synthesis of heteroepitaxial BP and related Al-B-Sb-As films via low temperature CVD of Al(BH4)3 and MH3 (M = P, As, Sb) at temperatures below 600°C
    P. Sims, P. Wallace, L. Liu, H. L. Zhuang, J. Kouvetakis, and J. Menendez
    Semiconductor Science and Technology, 35, 085034 (2020). [doi:10.1088/1361-6641/ab9325]
  36. Synthesis of a smart hybrid MXene with switchable conductivity
    H. Tran, R. Brilmayer, L. Liu, H. L. Zhuang, C. Hess, A. Andrieu-Brunsen, and C. Birkel
    ACS Applied Nano Materials, 3, 4069 (2020). [doi:10.1021/acsanm.0c00118]
  37. A machine learning-based method of design modular metamaterials
    L. Wu, L. Liu, Y. Wang, H. L. Zhuang, D. Krishnaraju, Q. X. Wang, and H. Q. Jiang
    Extreme Mechanics Letters, 36, 100657 (2020). [doi:10.1016/j.eml.2020.100657]
  38. Phase transition across anisotropic NbS3 and direct gap semiconductor TiS3 at nominal titanium alloying limit
    K. Wu, B. Chen, M. Blei, L. Liu, H. Cai, D. Wright, H. L. Zhuang, S. Tongay
    Advanced Materials, 32, 2000018 (2020). [doi:10.1002/adma.202000018]
  39. Ionic liquid-reinforced carbon nanofiber matrix enabled lean-electrolyte Li-S batteries via electrostatic attraction
    X. Wang, W. Zhang, D. Wang, H. L. Zhuang, S. Li, L. Fan, L. Li, X. Wang, Y. He, and Y. Y. Lu
    Energy Storage Materials, 26, 378 (2020). [doi:10.1016/j.ensm.2019.11.008]
  40. Scalable and controlled creation of nanoholes in graphene by microwave-assisted chemical etching for improved electrochemical properties
    D. Wang, R. Dai, X. Zhang, L. Liu, H. L. Zhuang, Y. Lu, Y. Wang, Y. Liao, and Q. Nian
    Carbon, 161, 880 (2020). [doi:10.1016/j.carbon.2020.01.076]
  41. Semiconducting SiGeSn high-entropy alloy: A density functional theory study
    D. Wang, L. Liu, and H. L. Zhuang
    Journal of Applied Physics, 126, 225703 (2019). [doi:10.1063/1.5135324]
  42. Synthesis and fundamental studies of Si-compatible (Si)GeSn and GeSn mid-IR systems with ultrahigh Sn contents
    C. Xu, D. Ringwala, D. Wang, L. Liu, C. Poweleit, S. Chang, H. L. Zhuang, J. Menéndez, and J. Kouvetakis
    Chemistry of Materials,31, 9831 (2019). [doi:10.1021/acs.chemmater.9b03909]
  43. Toward obtaining 2D and 3D and 1D PtPN with pentagonal pattern
    D. Wang, L. Liu, and H. L. Zhuang

    Journal of Materials Science, 54, 14029 (2019). [doi:10.1007/s10853-019-03886-x]
  44. Dimension engineering of single-layer PtN2 with the Cairo tessellation
    L. Liu, D. Wang, S. Lakamsani, W. Huang, C. Price, and H. L. Zhuang
    Journal of Applied Physics, 125, 204302 (2019). [doi:10.1063/1.5095239]
  45. Computational prediction and characterization of two-dimensional pentagonal arsenopyrite FeAsS
    L. Liu and H. L. Zhuang

    Computational Materials Science, 166, 105 (2019). [doi:10.1016/j.commatsci.2019.04.040]
  46. Machine-learning phase prediction of high-entropy alloys
    W. Huang, P. Martin, and H. L. Zhuang

    Acta Materialia, 169, 225 (2019). [doi:10.1016/j.actamat.2019.03.012]
  47. From pentagonal geometries to two-dimensional materials
    H. L. Zhuang

    Computational Materials Science, 159, 448 (2019). [doi:10.1016/j.commatsci.2018.12.041]
  48. Ab initio playing of pentagonal puzzles
    L. Liu, I. Kankam, and H. L. Zhuang

    Electronic Structure, 1, 015004 (2019). [doi:10.1088/2516-1075/aae303]
  49. Single-layer ferromagnetic and piezoelectric CoAsS with pentagonal structure
    L. Liu and H. L. Zhuang

    APL Materials, 7, 011101 (2019). [doi:10.1063/1.5079867]
  50. Can an element form a two-dimensional nanosheet of type 15 pentagons?
    L. Liu, I. Kankam, and H. L. Zhuang

    Computational Materials Science, 154, 37 (2018). [doi:10.1016/j.commatsci.2018.07.031]
  51. Single-layer antiferromagnetic semiconductor CoS2 with pentagonal structure
    L. Liu, I. Kankam, and H. L. Zhuang

    Physical Review B, 98, 205425 (2018). [doi:10.1103/PhysRevB.98.205425]
  52. PtP2: An example of exploring the hidden Cairo tessellation in the pyrite structure for discovering novel two-dimensional materials
    L. Liu and H. L. Zhuang,

    Physical Review Materials, 2, 114003 (2018). [doi:10.1103/PhysRevMaterials.2.114003]
  53. Anomalous dielectric reponses at intermixed oxide heterointerfaces
    V. R. Cooper, H. L. Zhuang, L. Zhang, P. Ganesh, H. Xu, and P. R. C. Kent

    arxiv:1806.08382
  54. High-throughput functionalization of single-layer electride Ca2N,
    L. Liu and H. L. Zhuang

    Materials Research Express, 5, 076306 (2018). [doi:10.1088/2053-1591/aad024]
  55. Tunable phase transition in single-layer TiSe2 via electric field
    L. Liu and H. L. Zhuang

    Journal of Solid State Chemistry, 262, 309 (2018). [doi:10.1016/j.jssc.2018.03.034]
  56. Machine learning for phase selection in multiprincipal element alloys
    N. Islam, W. Huang, and H. L. Zhuang

    Computational Materials Science, 150, 230 (2018). [doi:10.1016/j.commatsci.2018.04.003]
  57. Electrochemical surface passivation of LiCoO2 particles at ultrahigh voltage and its applications in lithium-based batteries
    J. Qian, L. Liu, J. Yang, S. Li, H. L. Zhuang, and Y. Y. Lu
    Nature Communications, 9, 4918 (2018). [doi:10.1038/s41467-018-07296-6]
  58. Ultimate control over hydrogen bond formation and reaction rates for scalable synthesis of highly crystalline vdW MOF nanosheets with large aspect ratio
    Y. Shen, B. Shan, H. Cai, Y. Qin, A. Agarwal, D. B. Trivedi, B. Chen, L. Liu,  H. L. Zhuang, B. Mu, and S. Tongay

    Advanced Materials, 27, 1802497 (2018). [doi:10.1002/adma.201802497]
  59. Highly crystalline synthesis of tellurene sheets on 2D surfaces: Control over helical chain direction of tellurene
    S. Yang, B. Chen, Y. Qin, Y. Zhou, L. Liu, M. Durso, H. L. Zhuang, Y. Shen, and S. Tongay

    Physical Review Materials, 2, 104002 (2018). [doi:10.1103/PhysRevMaterials.2.104002]
  60. Enabling stable lithium metal anode via 3D inorganic skeleton with superlithiophilic interphase
    L. Fan, S. Li, L. Liu, W. Zhang, L. Gao, Y. Fu, F. Chen, J. Li, H. L. Zhuang, and Y. Y. Lu

    Advanced Energy Materials, 8, 1802350 (2018). [doi:10.1002/aenm.201802350]
  61. Anomalous isoelectronic chalcogen rejection in 2D anisotropic vdW TiS3(1-x)Se3x trichalcogenides
    A. Agarwal, Y. Qin, B. Chen, M. Blei, K. Wu, L. Liu, Y. Shen, D. Wright, M. D. Green, H. L. Zhuang, and S. Tongay

    Nanoscale, 10, 15654 (2018). [doi:10.1039/C8NR04274H]
  62. Abnormal band bowing effects in phase instability crossover region of GaSe1-xTex nanomaterials
    H. Cai, B. Chen, M. Blei, S. L. Y. Chang, K. Wu, H. L. Zhuang, and S. Tongay
    Nature Communications, 9, 1927 (2018). [doi:10.1038/s41467-018-04328-z]
  63. Magnetoelectric and Raman spectroscopic studies of single-crystalline MnCr2O4
    G. T. Lin, Y. Q. Wang, X. Luo, J. Ma, H. L. Zhuang, D. Qian, L. H. Yin, F. C. Chen, J. Yan, R. R. Zhang, S. L. Zhang, W. Tong, W. H. Song, P. Tong, X. B. Zhu, and Y. P. Sun

    Physical Review B, 97, 064405 (2018). [doi:10.1103/PhysRevB.97.064405]
  64. A ‘cation-anion regulation’ synergistic anode host for dendrite-free lithium metal batteries
    W. Zhang, H. L. Zhuang, L. Fan, L. Gao, and Y. Y. Lu
    Science Advances, 4, eaar4410 (2018). [doi:10.1126/sciadv.aar4410]
  65. Stable lithium electrodeposition at ultra-high current densities enabled by 3D PMF/Li composite anode
    L. Fan, H. L. Zhuang, W. Zhang, Y. Fu, Z. Liao, and Y. Y. Lu
    Advanced Energy Materials, 8, 1703360 (2018). [doi:10.1002/aenm.201703360]
  66. Layered tetragonal zinc chalcogenides for energy-related applications: from photocatalysts for water splitting to electrode materials for Li-ion batteries
    J. Zhou, H. L. Zhuang, and H. Wang
    Nanoscale, 9, 17303 (2017). [doi:10.1039/C7NR04289B]
  67. Computational methods for 2D materials: discovery, property characterization, and application design
    J. Paul, A. Singh, Z. Dong, H. L. Zhuang, B. Revard, B. Rijal, M. Ashton, A. Linscheid, M. Blonsky, D. Gluhovic, J. Guo, and R. G. Hennig,
    Journal of Physics: Condensed Matter, 29, 473001 (2017). [doi:10.1088/1361-648X/aa9305]
  68. Orbital-free density functional theory characterization of the β′-Mg2Al3 Samson phase
    H. L. Zhuang, M. Chen, and E. A. Carter
    Physical Review Materials, 2, 073603 (2018). [doi:10.1103/PhysRevMaterials.2.073603]
  69. Doping-controlled phase transitions in single-layer MoS2
    H. L. Zhuang, M. D. Johannes, A. Singh, and R. G. Hennig
     Physical Review B, 96, 165305 (2017). [doi:10.1103/PhysRevB.96.165305]
  70. Prediction and characterization of an Mg-Al intermetallic compound with potentially improved ductility via orbital-free and Kohn-Sham density functional theory
    H. L. Zhuang, M. Chen, and E. A. Carter
    Modeling and Simulation in Materials Science and Engineering, 25, 075002 (2017). [doi:10.1088/1361-651X/aa7e0c]
  71. A density functional+U assessment of oxygen evolution reaction mechanisms on β-NiOOH
    A. Tkalych, H. L. Zhuang, and E. A. Carter
    ACS Catalysis, 7, 5329 (2017). [doi:10.1021/acscatal.7b00999]
  72. Tricritical behavior of the two-dimensional intrinsically ferromagnetic semiconductor CrGeTe3
    G. T. Lin, H. L. Zhuang, X. Luo, B. J. Liu, F. C. Chen, J. Yan, Y. Sun, J. Zhou, W. J. Lu, P.Tong, Z. G. Sheng, Z. Qu, W. H. Song, X. B. Zhu, and Y. P. Sun
     Physical Review B, 95, 245212 (2017). [doi:10.1103/PhysRevB.95.245212]
  73. Regulating Li deposition at artificial solid electrolyte interphases
    L. Fan, H. L. Zhuang, L. Gao, Y. Y. Lu, and L. A. Archer
    Journal of Materials Chemistry A, 5, 3483 (2017). [doi:10.1039/C6TA10204B]
  74. Competing antiferromagnetism in a quasi-2D itinerant ferromagnetic Fe3GeTe2
    J. Y. Yi, H. L. Zhuang, Q. Zou, Z. Wu, G. Cao, S. Tang, S. A. Calder, P. R. C. Kent, D. Mandrus, and Z. Gai

    2D Materials, 4, 011005 (2017). [doi:10.1088/2053-1583/4/1/011005]
  75. Surface energy as a descriptor of catalytic activity
    H. L. Zhuang, A. Tkalych, and E. A. Carter
    Journal of Physical Chemistry C, 120, 23698 (2016). [doi:10.1021/acs.jpcc.6b09687]
  76. Elastic and thermodynamic properties of complex Mg-Al intermetallic compounds via orbital-free density functional theory
    H. L. Zhuang, M. Chen, and E. A. Carter
    Physical Review Applied, 5, 064021 (2016). [doi:10.1103/PhysRevApplied.5.064021]
  77. Understanding and tuning the hydrogen evolution reaction on Pt-covered tungsten carbide cathodes
    H. L. Zhuang, A. J. Tkalych, and E. A. Carter
    Journal of The Electrochemical Society, 163, F629 (2016). [doi:10.1149/2.0481607jes]
  78. Petascale computations of orbital-free density functional theory enabled by small-box techniques
    M. Chen, X. -W. Jiang, H. L. Zhuang, L.-W. Wang, and E. A. Carter
    Journal of Chemical Theory and Computation, 12, 2950 (2016). [doi:10.1021/acs.jctc.6b00326]
  79. Tunable one-dimensional electron gas carrier densities at oxide nanostructured interfaces
    H. L. Zhuang,* L. P. Zhang, H. X. Xu, P. R. C. Kent, P. Ganesh,* and V. R. Cooper
    Scientific Reports, 6, 25452 (2016). [doi:10.1038/srep25452]
  80. Strong anisotropy and magnetostriction in 2D Stoner ferromagnet Fe3GeTe2
    H. L. Zhuang, P. R. C. Kent, and R. G. Hennig
    Physical Review B, 93, 134407 (2016). [doi:10.1103/PhysRevB.93.134407]
  81. Stability and magnetism of strongly correlated single-layer VS2
    H. L. Zhuang and R. G. Hennig
    Physical Review B, 93, 054429 (2016). [doi:10.1103/PhysRevB.93.054429]
  82. Density functional theory study of bulk and single-layer magnetic semiconductor CrPS4
    H. L. Zhuang and J. Zhou
    Physical Review B, 94, 195307 (2016). [doi:10.1103/PhysRevB.94.195307]
  83. Chloride-reinforced carbon nanofiber host as effective polysulfide traps in lithium-sulfur batteries
    L. Fan, H. L. Zhuang, K. Zhang, V. Cooper, Q. Li, and Y. Y. Lu
    Advanced Science, 3, 1600175 (2016). [doi:10.1002/advs.201600175]
  84. Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material
    M-W. Lin, H. L. Zhuang, J. Q. Yan, T. Z. Ward, J. Yan, A. A. Puretzky, C. M. Rouleau, Z. Gai, L. Liang, V. Meunier, B. Sumpter, P. Ganesh, P. R. C. Kent, D. B. Geohegan, D. Mandrus, K. Xiao
    Journal of Materials Chemistry C, 4, 315 (2016). [doi:10.1039/C5TC03463A]
  85. First-Principles study on the 1T phase of GaX (X = S, Se) monolayers
    J. Zhou and H. L. Zhuang
    ChemistrySelect, 1, 5779 (2016). [doi:10.1002/slct.201601144]
  86. Oxygen vacancy diffusion in bulk SiTiO3 from density functional theory calculation
    L. P. Zhang, B. Liu, H. L. Zhuang, P. R. C. Kent, V. R. Cooper, P. Ganesh, and H. X. Xu
    Computational Materials Science, 118, 309 (2016). [doi:10.1016/j.commatsci.2016.02.041]
  87. Interface orbital engineering of large-gap topological states: decorating gold in Si (111) surface
    B. Huang, K. -H. Jin, H. L. Zhuang, L. Zhang, and F. Liu
    Physical Review B, 93, 115117 (2016). [doi:10.1103/PhysRevB.93.115117]
  88. Enhanced Li-S batteries using Amine-functionalized CNT in the cathode
    L. Ma, H. L. Zhuang, S. Wei, K. E. Hendrickson, M. S. Kim, G. Cohn, R. G. Hennig, and L. A. Archer
    ACS Nano, 10, 1050 (2016). [doi:10.1021/acsnano.5b06373]
  89. Hybrid cathode architectures for lithium batteries based on TiS2 and sulfur
    L. Ma, S. Wei, H. L. Zhuang, K. E. Hendrickson, R. G. Hennig, and L. A. Archer
    Journal of Materials Chemistry A, 3, 19857 (2015). [doi:10.1039/C5TA06348E]
  90. Ab-initio prediction of piezoelectricity in two-dimensional materials
    M. N. Blonsky, H. L. Zhuang, A. Singh, and R. G. Hennig
    ACS Nano, 9, 9885 (2015). [doi:10.1021/acsnano.5b03394]
  91. Rashba effect in single-layer antimony telluroiodide SbTeI
    H. L. Zhuang, V. R. Cooper, H. X. Xu, P. Ganesh, R. G. Hennig, and P. R. C. Kent
    Physical Review B, 92, 115302 (2015). [doi:10.1103/PhysRevB.92.115302]
  92. Computational discovery of ferromagnetic semiconducting single-layer CrSnTe3
    H. L. Zhuang, Y. Xie, P. R. C. Kent, and P. Ganesh
    Physical Review B, 92, 035407 (2015). [doi:10.1103/PhysRevB.92.035407]
  93. Highly stable two-dimensional silicon phosphides: different stoichiometries and exotic electronic properties
    B. Huang, H. L. Zhuang, M. Yoon, B. G. Sumpter, and S-H. Wei
    Physical Review B, 91, 121401(R) (2015). [doi:10.1103/PhysRevB.91.121401]
  94. Strong spin-lattice coupling in CrSiTe3
    L. D. Casto, A. J. Clune, M. Yokosuk, J. L. Musfeldt, T. J. Williams, H. L. Zhuang, M.W. Lin, K. Xiao, R. G. Hennig, B. C. Sales, J. Q. Yan, D. Mandrus
    APL Materials, 3, 041515 (2015). [doi:10.1063/1.4914134]
  95. Computational screening of single-layer materials for photocatalysis
    A. K. Singh, M. Kiran, H. L. Zhuang, and R. G. Hennig
    Journal of Physical Chemistry Letters, 6, 1087 (2015). [doi:10.1021/jz502646d]
  96. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries
    Y. Xie, Y Dall’Agnese, M. Naguib, Y. Gogotsi, H. L. Zhuang, and P. R. C. Kent
    ACS Nano, 8, 9606 (2014). [doi:10.1021/nn503921j]
  97. Understanding the interactions between oxygen vacancies at SrTiO3 (001) surfaces
    H. L. Zhuang, P. Ganesh, V. R. Cooper, H. X. Xu, and P. R. C. Kent
    Physical Review B, 90, 064106 (2014). [doi:10.1103/PhysRevB.90.064106]
  98. Tethered molecular sorbents: enabling lithium-sulfur battery cathodes
    L. Ma, H. L. Zhuang, Y. Lu, S.S. Moganty, R. G. Hennig, and L. A. Archer
    Advanced Energy Materials, 4, 1400390 (2014). [doi:10.1002/aenm.201470090]
  99. Ab-initio synthesis of single-layer III-V materials
    A. Singh, H. L. Zhuang, and R. G. Hennig
    Physical Review B, 89, 245431 (2014). [doi:10.1103/PhysRevB.89.245431]
  100. Computational discovery, characterization and design of single-layer materials
    H. L. Zhuang and R. G. Hennig
    JOM, 66, 366 (2014). [doi:10.1007/s11837-014-0885-3]
  101. Computational prediction and characterization of single-layer CrS2
    H. L. Zhuang, M. D. Johannes, M. N. Blonsky, and R. G. Hennig
    Applied Physics Letters, 104, 022116 (2014). [doi:10.1063/1.4861659]
  102. Computational identification of single-layer CdO for electronic and optical applications
    H. L. Zhuang and R. G. Hennig,
    Applied Physics Letters, 103, 212102 (2013). [doi:10.1063/1.4831972]
  103. Single-layer group-III monochalcogenide photocatalysts for water splitting
    H. L. Zhuang and R. G. Hennig
    Chemistry of Materials, 25, 3232 (2013). [doi:10.1021/cm401661x]
  104. Computational search for single-layer transition-metal dichalcogenide photocatalysts
    H. L. Zhuang and R. G. Hennig
    Journal of Physical Chemistry C, 117, 20440 (2013). [doi:10.1021/jp405808a]
  105. Theoretical perspective of photocatalytic properties of single-layer SnS2
    H. L. Zhuang and R. G. Hennig
    Physical Review B, 88, 115314 (2013). [doi:10.1103/PhysRevB.88.115314]
  106. Computational discovery of single-layer III-V materials
    H. L. Zhuang, A. Singh, and R. G. Hennig
    Physical Review B, 87, 165425 (2013). [doi:10.1103/PhysRevB.87.165415]
  107. Accuracy of exchange-correlation functionals and effects of solvation on the surface energy of copper
    M. Fishman, H. L. Zhuang, K. Mathew, W. Dirschka, and R. G. Hennig
    Physical Review B, 87, 245402 (2013). [doi:10.1103/PhysRevB.87.245402]
  108. Electronic structures of single-layer boron pnictides
    H. L. Zhuang and R. G. Hennig
    Applied Physics Letters, 101, 153109 (2012). [doi:10.1063/1.4758465]
  109. Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene
    R. W. Havener, H. L. Zhuang, L. Brown, R. G. Hennig, and J. Park
    Nano Letters, 12, 3162 (2012). [doi:10.1021/nl301137k]
  110. Softened elastic response and unzipping in chemical vapor deposition graphene membranes
    C. S. Ruiz-Vargas, H. L. Zhuang, P. Y. Huang, A. M. van der Zande, S. Garg, P. L. McEuen, D.A. Muller, R. G. Hennig, and J. Park
    Nano Letters, 11, 2259 (2011). [doi:10.1021/nl200429f]
  111. Interactions between transition metals and defective carbon nanotubes
    H. L. Zhuang, G. P. Zheng, and A. K. Soh
    Computational Materials Science, 43, 823 (2008). [doi:10.1016/j.commatsci.2008.01.071]
  112. Magneto-mechanical coupling behavior of defective single-walled carbon nanotubes
    G. P. Zheng and H. L. Zhuang
    Nanotechnology, 19, 325701 (2008). [doi:10.1088/0957-4484/19/32/325701]
  113. Enhanced mechanical strength and ductility of metal-repaired defective carbon nanotubes: A density functional study
    G. P. Zheng and H. L. Zhuang
    Applied Physics Letters, 92, 191902 (2008). [doi:10.1063/1.2924275]